Cours de Biochimie 2 Chapitre II : Biochimie Métabolique

1. Rappel en Bioénergétique

- Thermodynamique
- Aspect Enzymatique
- Oxydoréduction

2. La chaîne respiratoire mithocondriale (CRM)

- Les différents complexes
- Théorie chimio-osmotique
- Bilans énergétiques

3. Le métabolisme

3.1.Le métabolisme des glucides

Voie d'Embden-Meyerhof : la glycolyse

- Réactions
- Bilan énergétique
- Les sources de glucose
- Régulation
- Devenir du pyruvate

La glycogénogénèse

La néoglucogénogénèse

3.2.Le cycle de Krebs

Les réactions

Le bilan énergétique

3.3. Le métabolisme des lipides

La β -oxydation des acides gras

- Activation
- Transport
- Etapes de la dégradation
- Bilans energétiques
- Cas particuliers

La voie de Wakil

- Formation du palmitate
- Désaturations

Formation des Triglycérides

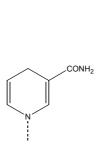
3.4. Le métabolisme des protéines

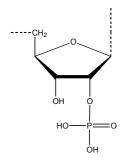
Dégradation des acides aminés

- Désamination oxydative
- Transamination
- Cycle de l'urée
- Dégradation du squelette carboné

Synthèses de certains acides aminés

Quelques sites:

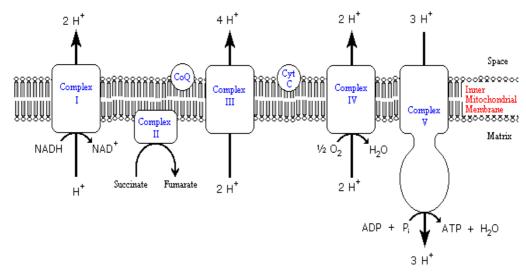

http://ww.snv.jussieu.fr/bmedia/


http://www.gwu.edu/~mpb/index.html

http://fr.wikibooks.org/wiki/Les_principales_voies_du_m%C3%A9tabolisme#La_cha.C3.AEne_respira_toire

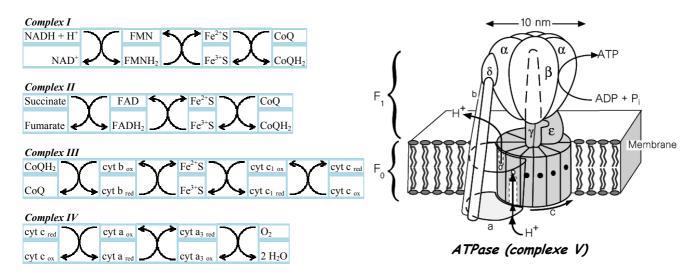
FAD

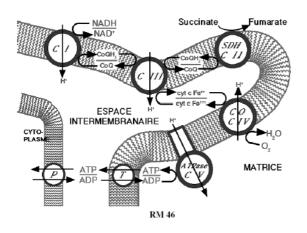
FADH₂



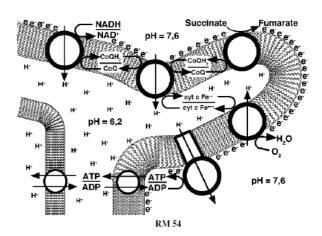
 $NADH + H^+$

 $NADP^{+} - NADPH + H^{+}$


Co-enzyme A



Les complexes de la chaîne respiratoire mitochondriale


Composition des complexes de la chaîne de transport d'électrons

Complexe	protomères	masse molaire (kDa)	Composants
complexe I : NADH-coenzyme Q oxydoréductase	25	800	•1 FMN•22 à 24 atomes Fe - S dans 5 à 8 centres
complexe II : succinate-coenzyme Q oxydoréductase	4	125	•1 FAD•7 à 8 atomes Fe - S dans 3 centres•cytochrome <i>b</i>
complexe III : coenzyme Q-cytochrome c oxydoréductase	8		•2 centres Fe - S•cytochrome b560•cytochrome b566•cytochrome c1
complexe IV : cytochrome c oxydase	12	220	•cytochrome <i>a</i> •cytochrome <i>a</i> 3•2 ions cuivre

Le gradient de protons

Les bilans énergétiques de la CRM

Oxydation du NADH

$$NADH + H^{+} + CoQ \longrightarrow NAD^{+} + CoQH_{2} + 73 \text{ kJ/mol}$$

$$CoQH_{2} + 2 \text{ cyt c Fe}^{++} \longrightarrow CoQ + 2 \text{ cyt c Fe}^{++} + 2 \text{ H}^{+} + 39 \text{ kJ/mol}$$

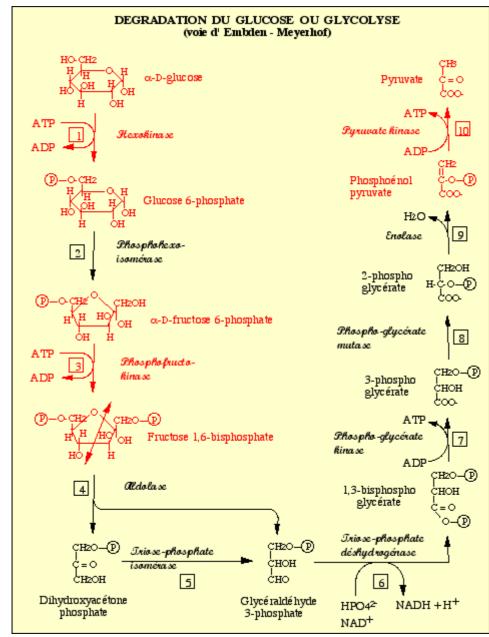
$$2 \text{ cyt c Fe}^{++} + 1/2 O_{2} + 2 \text{ H}^{+} \longrightarrow 2 \text{ cyt c Fe}^{++} + H_{2}O + 106 \text{ kJ/mol}$$

NADH + H
$$^{+}$$
 + 1/2 O_2 NAD $^{+}$ + H_2O + 218 kJ/mol

Oxydation phosphorylante du NADH

NADH + H⁺ + CoQ
$$\longrightarrow$$
 NAD⁺ + CoQH₂ + 73 kJ/mol
CoQH₂ + 2 cyt c Fe⁺⁺ \longrightarrow CoQ + 2 cyt c Fe⁺⁺ + 2 H⁺ + 39 kJ/mol
2 cyt c Fe⁺⁺ + 1/2 O₂ + 2 H⁺ \longrightarrow 2 cyt c Fe⁺⁺⁺ + H₂O + 106 kJ/mol
93 kJ/mol + 3 ADP + 3 PO₄H⁻⁻ + 3 H⁺ \longrightarrow 3 ATP + 3 H₂O

NADH + H+ + 1/2
$$O_2$$
 + 3 ADP + 3 PO_4H^{--} + 3 H+ $---$ NAD+ + 4 H_2O + 3 ATP + 125 kJ/mol


Oxydation du Succinate

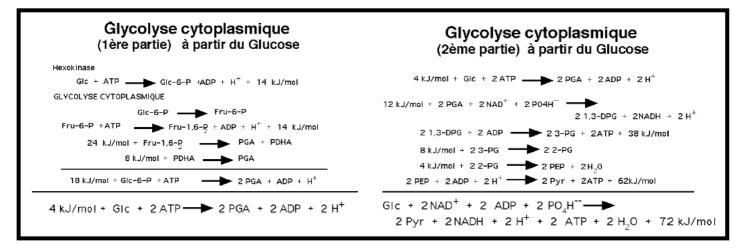
Succinate + CoQ
$$\longrightarrow$$
 Furnarate + CoQH₂ + 6 kJ/mol CoQH₂ + 2 cyt c Fe⁺⁺⁺ + 2 H⁺ + 39 kJ/mol 2 cyt c Fe⁺⁺⁺ + 1/2 O₂ + 2 H⁺ \longrightarrow 2 cyt c Fe⁺⁺⁺ + H₂O + 106 kJ/mol

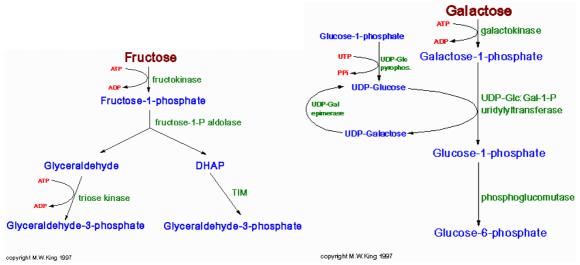
Oxydation phosphorylante du Succinate

Succinate + CoQ
$$\longrightarrow$$
 Fumarate + CoQH₂ + 6 kJ/mol
CoQH₂ + 2 cyt c Fe⁺⁺⁺ \longrightarrow CoQ + 2 cyt c Fe⁺⁺⁺ + 2 H⁺ + 39 kJ/mol
2 cyt c Fe⁺⁺⁺ + 1/2 O₂ + 2 H⁺ \longrightarrow 2 cyt c Fe⁺⁺⁺ + H₂O + 106 kJ/mol
62 kJ/mol + 2 ADP + 2 PO₄H⁺⁺⁺ + 2 H⁺ \longrightarrow 2 ATP + 2 H₂O

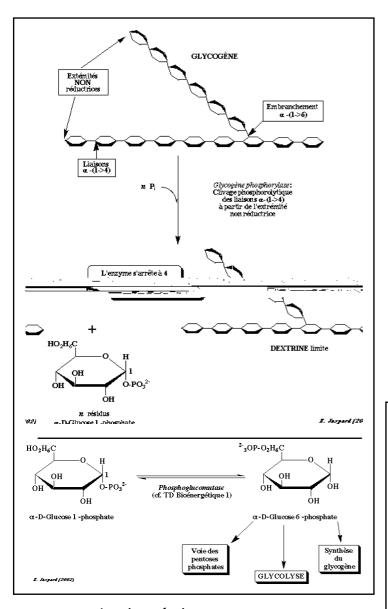
Succinate +
$$1/2 O_2 + 2 ADP + 2 PO_4 H^{--} + 2 H^{+-}$$

Furnarate + $3 H_2 O_1 + 2 ATP_2 + 88 kJ/mol_2$

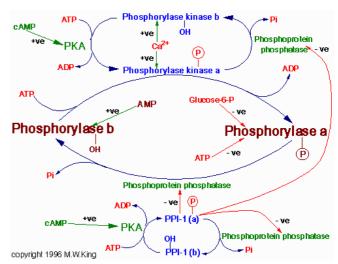



Valeurs des enthalpies libres standards et physiologiques des réactions de la glycolyse

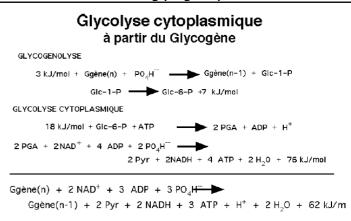
Réaction	ΔG^{0} $\Delta G'$		
	kJ.mol ⁻¹		
1	-16,7	-33,5	
2	+1,7	-2,5	
3	-14,2	-22,2	
4	+23,9	-1,3	
5	+7,6	+2,5	
6	+12,6	-3,4	
7	-37,6	+2,6	
8	+8,8	+1,6	
9	+3,4	-6,6	
10	-62,8	-33,4	

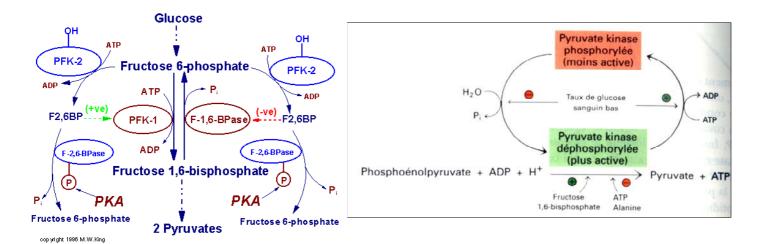

Les réactions de la Glycolyse

Bilans énergétiques de la glycolyse



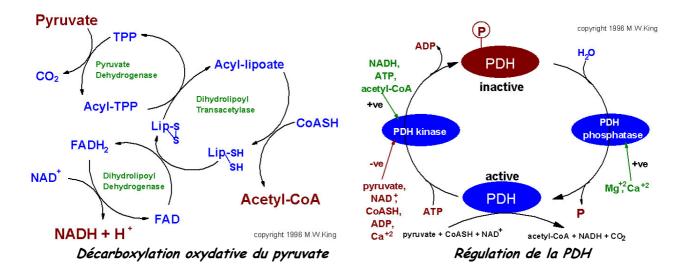
Fructose et Galactose : autres sources de glucose pour la glycolyse



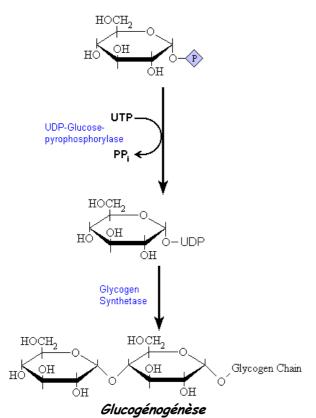

La glycogénolyse

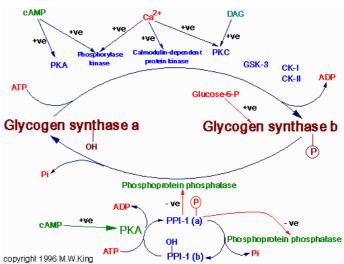
Régulation, de la phosphorylase

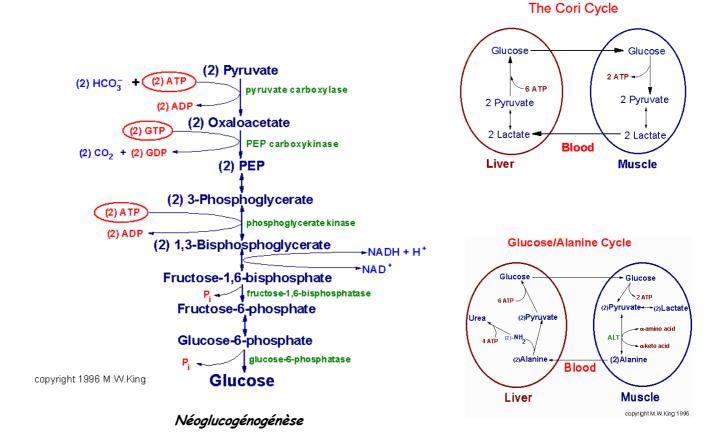
Bilan de la glycogénolyse

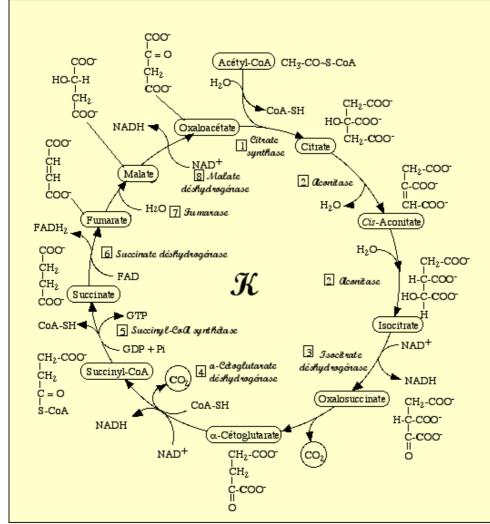


Régulation de la glycolyse

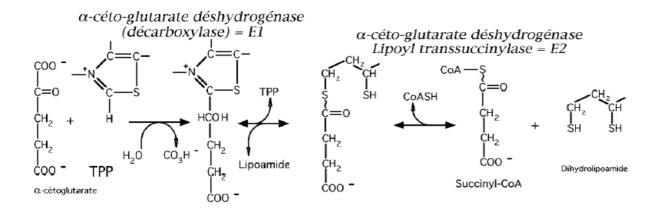

Fermentation lactique et son bilan énergétique


Fermentation alcoolique


Malate-Aspartate Shuttle (1/2) Glucose Malate NAD MDH Glyceraldehyde 3-phosphate NADH MDH **G3PDH** NADH 1,3-BPG Cytosol Inner mito membrane copyright M.W.King 1996 Glycerol Phosphate Shuttle (1/2) Glucose Glyceraldehyde 3-phosphate Glycerol-3-P FAD **G3PDH** Glycerol-3PDH Glycerol-3PDH NADH FADH₂ 1,3-BPG Inner mito Cytosol Pyruvate membrane copyright 1996 M.W.King


Les navettes

Régulation de la glucogénogénèse



Valeurs des enthalpies libres standards des réactions du cycle de Krebs

Réaction	∆ G °'	
	kJ.mol ⁻¹	
1	-32,2	
2	+6,3	
3	-20,9	
4	-33,5	
5	-2,9	
6	0,0	
7	-3,8	
8	+29,7	

Les réactions du cycle de Krebs

Description de la réaction 4 du cycle de Krebs

Cycle de KREBS

$$Ac - CoA + 0xAc + H_2O \longrightarrow Cit + CoASH + H^+ + 38 kJ$$

$$Cit + 9 kJ \longrightarrow Aco + H_2O \longrightarrow ICit + 2 kJ$$

$$ICit + NAD^+ + H_2O \longrightarrow \alpha - KG + HCO_3^- + NADH + H^+ + 7 kJ$$

$$\alpha - KG + NAD^+ + CoASH + H_2O \longrightarrow Suc - SCoA + HCO_3^- + NADH + H^+ + 37 kJ/moI$$

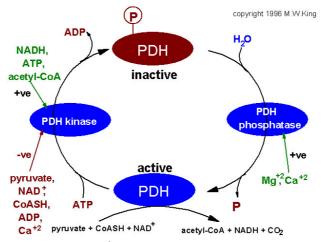
$$Suc - SCoA + GDP + PO_4H^- \longrightarrow Suc + CoASH + GTP + 9 kJ$$

$$GTP + ADP \longrightarrow GDP + ATP$$

$$Suc + CoQ \longrightarrow Fum + CoQH_2 + 6 kJ$$

$$Fum + H_2O \longrightarrow MaI + 4 kJ$$

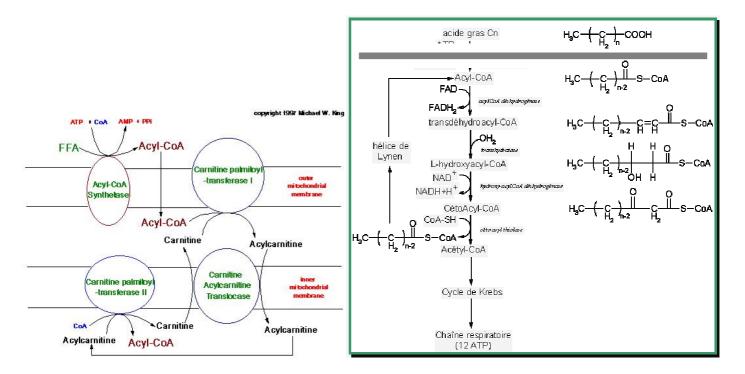
$$MaI + NAD^+ + 28 kJ \longrightarrow 0xAc + NADH + H^+$$


$$Ac - CoA + 3 NAD^+ + CoQ + ADP + PO_4H^- + 4 H_2O \longrightarrow$$

$$2 HCO_3^- + 3 NADH + CoQH_2 + ATP + CoASH + 4 H^+ + 66 kJ$$

Bilan énergétique du cycle de Krebs

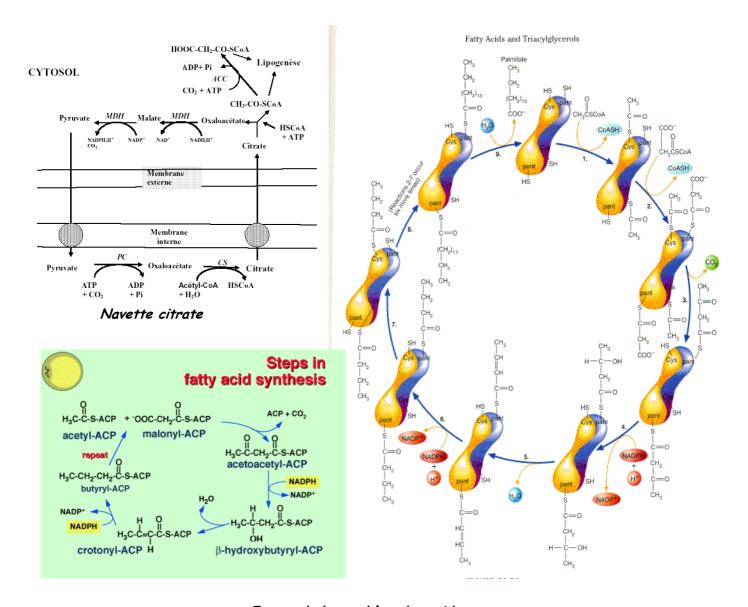
Bilan énergétique de la Glycolyse et du Cycle de Krebs


Etapes de l'oxydation	ATP / GTP	Cofacteurs réduits	Liaisons	phosphates
complète du glucose	formés	riches en énergie	correspond	lantes
Glycolyse	2 ATP		2	2
		2 NADH,H ⁺	6	5
Pyruvate →Acétyl-CoA		2 NADH,H ⁺	6	5
	2 GTP		2	2
Cycle de citrate		6 NADH,H ⁺	18	15
_		2 FADH ₂	4	3
Total (1)	36 si les 2 NADH,H ⁺ cytosoliques sont transportés dans les mitochondries par navette Glycérol 3- ⊕/dihydroxyacétone 3-⊕		38 (36)	
Total (2)	30 si les 2 NADH,H ⁺ cytosoliques sont transportés dans les mitochondries par navette Glycérol 3-			32 (30)

Régulation du cycle de Krebs

R-CH2-COOH + ATP + HSCoA ----> R-CH2-CO--SCoA + AMP + PPi

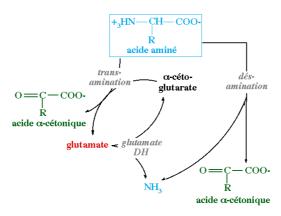
Activation des acides gras

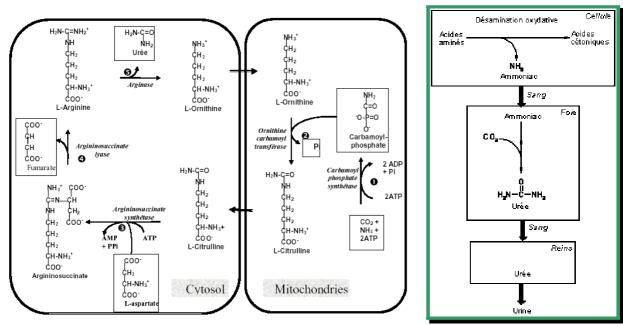


Transport à Carnitine

Hélice de Lynen

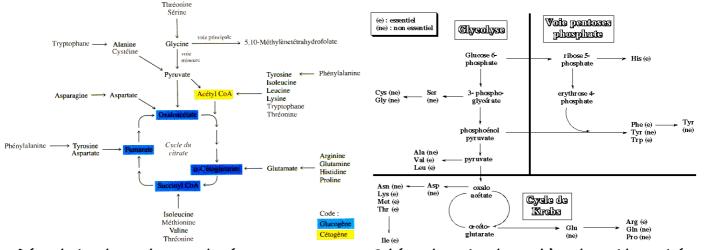
Bilan énergétique de la β -oxydation des acides gras


Nombre de carbones	2n Carbones	(2n+1) Carbones
Coût de l'activation	2 liaisons phosphates	2 liaisons phosphates
	(n-1) FADH ₂	(n-1) FADH ₂
Produits de la β-oxydation		
	(n-1) NADH,H ⁺	(n-1) NADH,H ⁺
	n Acétyl-CoA	(n-1) Acétyl-CoA
		1 propionyl-CoA


Etapes de la synthèse des acides gras

Biosynthèse du palmitate - 11 Glc-6P + 11 ADP + 11 H⁺ 18 Pyr + 27 ATP + 38 NADH + 38 H+ + 19 O₂ + 114 ADP + 114 PO₄H 2 CoQH₂ + 4 H⁺ + O₂ + 4 ADP + 4 PO₄H 16 Pyr + 16 NAD+ + 16 CoASH + 16 H₂0 14 Ac-CoA + 14 HCO₃ 2 Ac-CoA + 14 Mai-CoA + 28 NADPH + 28 H+ 2 Palmityl-CoA + 14 HCO + 28 NADP 2 Glc-6P + 24 NADP+ + 26 H-0 12 HCO3 + 24 NADPH + 24 H+ + 2 PO4H 2 Pyr + 4 NADP+ + 4 NAD+ + 2 CoQ + 12 H₂0 -6 HCO3 + 4 NADPH + 4 NADH + CoQH2 + 12 H+ 11 Glc + 20 O₂ + 2 CoASH + 120 ADP + 120 PO₄H 2 Palmityl-CoA + 34 HCO₃" + 120 ATP + 122 H₂O + 14 H⁺

Bilan de la synthèse du palmitate



Dégradation du groupement amine des acides aminés

Cycle de l'Urée

Elimination de l'urée

Dégradation du squelette carboné

Schéma des voies de synthèse des acides aminés